Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo.

نویسندگان

  • Heather B Adkins
  • Caterina Bianco
  • Susan G Schiffer
  • Paul Rayhorn
  • Mohammad Zafari
  • Anne E Cheung
  • Olivia Orozco
  • Dian Olson
  • Antonella De Luca
  • Ling Ling Chen
  • Konrad Miatkowski
  • Chris Benjamin
  • Nicola Normanno
  • Kevin P Williams
  • Matthew Jarpe
  • Doreen LePage
  • David Salomon
  • Michele Sanicola
چکیده

Cripto, a cell surface-associated protein belonging to the EGF-CFC family of growth factor-like molecules, is overexpressed in many human solid tumors, including 70-80% of breast and colon tumors, yet how it promotes cell transformation is unclear. During embryogenesis, Cripto complexes with Alk4 via its unique cysteine-rich CFC domain to facilitate signaling by the TGF-beta ligand Nodal. We report, for the first time to our knowledge, that Cripto can directly bind to another TGF-beta ligand, Activin B, and that Cripto overexpression blocks Activin B growth inhibition of breast cancer cells. This result suggests a novel mechanism for antagonizing Activin signaling that could promote tumorigenesis by deregulating growth homeostasis. We show that an anti-CFC domain antibody, A8.G3.5, both disrupts Cripto-Nodal signaling and reverses Cripto blockade of Activin B-induced growth suppression by blocking Cripto's association with either Alk4 or Activin B. In two xenograft models, testicular and colon cancer, A8.G3.5 inhibited tumor cell growth by up to 70%. Both Nodal and Activin B expression was found in the xenograft tumor, suggesting that either ligand could be promoting tumorigenesis. These data validate that functional blockade of Cripto inhibits tumor growth and highlight antibodies that block Cripto signaling mediated through its CFC domain as an important class of antibodies for further therapeutic development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cripto: a novel target for antibody-based cancer immunotherapy.

Cripto, a member of the epidermal growth factor-Cripto-FRL-Criptic (EGF-CFC) family, has been described recently as a potential target for immunotherapy (Adkins et al., J Clin Invest 2003;112:575-87). We have produced rat monoclonal antibodies (mAbs) to a Cripto 17-mer peptide, corresponding to the "EGF-like" motif of Cripto. The mAbs react with most cancers of the breast, colon, lung, stomach,...

متن کامل

Biological and Clinicopathological Significance of Cripto-1 Expression in the Progression of Human ESCC

Background: Human Cripto-1, a member of the EGF-CFC family, is involved in embryonic development, embryonic stem cell maintenance, and tumor progression. It also participates in multiple cell signaling pathways including Wnt, Notch, and TGF-β. Remarkably, it is expressed in cancer stem cell (CSC) compartments, boosting tumor cell migration, invasion, and angiogenesis. Although Cripto-1 is ...

متن کامل

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

Cripto haploinsufficiency affects in vivo colon tumor development

Colorectal cancer is one of the most common and aggressive cancers arising from alterations in various signaling pathways, such as the WNT, RAS-MAPK, PI3K and transforming growth factor-β (TGF-β) pathways. Cripto (also called Teratocarcinoma-derived growth factor), the original member of the vertebrate EGF-CFC family, plays a key role in all of these pathways and is deeply involved in early emb...

متن کامل

Non-cell-autonomous role for Cripto in axial midline formation during vertebrate embryogenesis.

Several membrane-associated proteins are known to modulate the activity and range of potent morphogenetic signals during development. In particular, members of the EGF-CFC family encode glycosyl-phosphatidylinositol (GPI)-linked proteins that are essential for activity of the transforming growth factor beta (TGFbeta) ligand Nodal, a factor that plays a central role in establishing the vertebrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 112 4  شماره 

صفحات  -

تاریخ انتشار 2003